Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes.
نویسندگان
چکیده
The mechanism by which insulin induces the expression of the sterol regulatory element binding protein 1c (SREBP-1c) and glucokinase genes was investigated in cultured rat hepatocytes. Overexpression of an NH(2)-terminal fragment of IRS-1 that contains the pleckstrin homology and phosphotyrosine binding domains (insulin receptor substrate-1 NH(2)-terminal fragment [IRS-1N]) inhibited insulin-induced tyrosine phosphorylation of IRS-1 as well as the association of IRS-1 with phosphatidylinositol (PI) 3-kinase activity, whereas the tyrosine phosphorylation of IRS-2 and its association with PI 3-kinase activity were slightly enhanced. The equivalent fragment of IRS-2 (IRS-2N) prevented insulin-induced tyrosine phosphorylation of both IRS-1 and IRS-2, although that of IRS-1 was inhibited more efficiently. The insulin-induced increases in the abundance of SREBP-1c and glucokinase mRNAs, both of which were sensitive to a dominant-negative mutant of PI 3-kinase, were blocked in cells in which the insulin-induced tyrosine phosphorylation of IRS-1 was inhibited by IRS-1N or IRS-2N. A dominant-negative mutant of Akt enhanced insulin-induced tyrosine phosphorylation of IRS-1 (but not that of IRS-2) and its association with PI 3-kinase activity, suggesting that Akt contributes to negative feedback regulation of IRS-1. The Akt mutant also promoted the effects of insulin on the accumulation of SREBP-1c and glucokinase mRNAs. These results suggest that the IRS-1-PI 3-kinase pathway is essential for insulin-induced expression of SREBP-1c and glucokinase genes.
منابع مشابه
Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes.
The transcription factor sterol regulatory-element-binding protein-1c (SREBP-1c) plays a major role in the effect of insulin on the transcription of hepatic genes such as glucokinase and fatty acid synthase. We show here in cultured rat hepatocytes that insulin, through activation of the phosphatidylinositol 3-kinase pathway increases the abundance of the precursor form of SREBP-1c in endoplasm...
متن کاملInhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation.
The flavonoid naringenin improves hyperlipidemia and hyperglycemia in streptozotocin-treated rats. In HepG2 human hepatoma cells, naringenin inhibits apolipoprotein B (apoB) secretion primarily by inhibiting microsomal triglyceride transfer protein and enhances LDL receptor (LDLr)-mediated apoB-containing lipoprotein uptake. Phosphatidylinositol 3-kinase (PI3K) activation by insulin increases s...
متن کاملResistin overexpression impaired glucose tolerance in hepatocytes.
Resistin is a 12.5-kDa cysteine-rich protein secreted from adipose tissue and is an important factor linking obesity with insulin resistance. Here, we investigated the effect of resistin on glucose tolerance in adult human hepatocytes (L-02 cells). In this study, resistin cDNA was transfected into L-02 cells, and glucose concentration and glucokinase activity were determined subsequently. The d...
متن کاملInsulin induction of glucokinase and fatty acid synthase in hepatocytes: analysis of the roles of sterol-regulatory-element-binding protein-1c and liver X receptor.
The transcription activator SREBP-1c (sterol-regulatory-element-binding protein-1c) is induced by insulin in the liver and is considered a master regulator of lipogenic genes such as FASN (fatty acid synthase). The question of whether SREBP-1c is also a mediator of insulin action on the regulatory enzyme of glucose metabolism GCK (glucokinase) is controversial. In the present paper, we induced ...
متن کاملMetformin attenuates palmitic acid-induced insulin resistance in L6 cells through the AMP-activated protein kinase/sterol regulatory element-binding protein-1c pathway.
AMP-activated protein kinase (AMPK) is an important effector of metformin action on glucose uptake in skeletal muscle cells. We recently reported that metformin improved insulin receptor substrate-1 (IRS-1)-associated insulin signaling by downregulating sterol regulatory element-binding protein-1c (SREBP-1c) expression. In this study, we investigated whether AMPK activation and SREBP-1c inhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 51 6 شماره
صفحات -
تاریخ انتشار 2002